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Opetopes

Geometric shapes of many-in-single-out operators in higher dimension.
Used for defining weak ω-categories.

•
0-opetope

• •
1-opetope

•

• •

•
2-opetope with three sources

•

2-opetope with no source

https://uemurax.github.io/
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Opetopes

A 3-opetope.

•

• •

•

•

•

⇛

•

• •

•

•

•

https://uemurax.github.io/
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Opetopic sets

The opetopes form a category O. An opetopic set is a set-valued presheaf
on O, i.e. a formal colimit of opetopes.

•

•

• • •

https://uemurax.github.io/
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Formal definitions

Contributors Prerequisites
Baez and Dolan (1998) operad
Leinster (2004) cartesian monad
Hermida, Makkai, and Power (2002) multicategory
Kock, Joyal, Batanin, and Mascari (2010) polynomial monad
Curien, Ho Thanh, and Mimram (2022) type theory

Not sufficiently accessible: some amount of prerequisites; too long.

https://uemurax.github.io/
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Posetal approach

Leclerc (2024) proposes a posetal definition of opetopes.

▶ An opetope is a poset of cells ordered by the subcell relation.

▶ Subcells of codimension 1 are source or target or both.
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a1 a2

a3

b0

b1

b2

b3

c0
a0
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c0

c0

b0 b1 b2 b3
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s
s s

t

s

s

t
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s t
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Elementary, simple, and elegant, except the following issue.

https://uemurax.github.io/
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Loop issue in posetal approaches

There is no way to distinguish loops, since swapping adjacent loops does
not cahnge the subcell relation.

d2

d1

d0

c2 c1

c4 c3

c0

b3 b2

b1

a0

⇛

d2

d1

d0

c2 c1

c0

b0

Total ordering on loops is part of structure in Leclerc’s definition.

https://uemurax.github.io/
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Contribution

I propose new definitions of opetopes and opetopic sets.

▶ Take a categorical approach rather than a posetal one.

▶ No need for special treatment of loops.

▶ The category of opetopic sets is defined first.

▶ Opetopes are opetopic sets satisfying one more axiom.

▶ The only prerequisite is basic category theory.

▶ Less than two pages in A4 size.

▶ Equivalent to existing definitions.

https://uemurax.github.io/
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Loop issue resolved

d2

d1

d0

c2 c1

c4 c3

c0

b3 b2

b1

a0

⇛

d2

d1

d0

c2 c1

c0

b0

Loops (c3 and c4) can be distinguished by equality of arrows.

b1

c2 c4

d1

=
t

b1

c2 c3

d1

̸=
t

https://uemurax.github.io/
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Outline

Introduction

Opetopic sets and opetopes

Opetopic sets as presheaves

Comparison with the polynomial monad definition

https://uemurax.github.io/
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Foundations

We work in Univalent Foundations. Constructively fine: no excluded middle;
no choice axiom; no propositional resizing.
Non-univalent audience may interpret types as groupoids (Hofmann and
Streicher 1998) for this talk.

https://uemurax.github.io/
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Gaunt categories

Definition

A category is gaunt if its type of objects is a set.

In non-univalent foundations, a category is gaunt if the identities are the
only isomorphisms in it (Barwick and Schommer-Pries 2021).

Example

The poset ω of finite ordinals is a gaunt category (so is any poset).

https://uemurax.github.io/
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ω-direct categories

Definition

An ω-direct category is a gaunt category A equipped with a conservative
functor deg : A→ ω called the degree functor. A k-step arrow,
written f : x→k y, is an arrow such that deg(x) + k = deg(y). Let
Arrk(A) denote the set of k-step arrows. Let A ↓k x ⊂ A ↓ x denote the
subset spanned by k-step arrows into x.

https://uemurax.github.io/
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Preopetopic sets

Definition

A preopetopic set is an ω-direct category A equipped with a subset
S(A) ⊂ Arr1(A) with complement T (A). A source arrow, written
f : x→s y, is an arrow in S(A). A target arrow, written f : x→t y, is an
arrow in T (A).

We think of objects in a preopetopic set A as cells, and the arrows in A

determine the configuration of the cells.

https://uemurax.github.io/
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Loops

Opetopes without loop will be encoded as posets.
For a loop, the source and target inclusions will be distinct.

a0

b0

c0

a0

b0

c0

t̸=

https://uemurax.github.io/
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Opetopic set axioms

An opetopic set is a preopetopic set A satisfying eight axioms.

Axiom (O1)

A ↓1 x is finite for every x : A.

Each cell has finitely many sources and targets.

Definition

A set A is finite if there exist n : N and e : {x : N | x < n} ≃ A.

https://uemurax.github.io/
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Opetopic set axioms

Axiom (O2)

For every object x : A of degree ≥ 1, there exists a unique target arrow into
x.

This expresses the single-out nature of opetopes.

Axiom (O3)

For every object x : A of degree 1, there exists a unique source arrow into x.

This expresses that the 1-opetope (•→ •) is single-in.

https://uemurax.github.io/
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Homogeneous/heterogeneous factorizations

Definition

Let A be a preopetopic set, f : y→1 x, and g : z→1 y. We say (f, g) is
homogeneous if either

▶ both f and g are source arrows; or

▶ both f and g are target arrows.

We say (f, g) is heterogeneous if either

▶ f is a source arrow and g is a target arrow; or

▶ f is a target arrow and g is a source arrow.

By a homogeneous/heterogeneous factorization of a 2-step arrow h

we mean a factorization h = f ◦ g such that (f, g) is
homogeneous/heterogeneous.

https://uemurax.github.io/
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Opetopic set axioms

Axiom (O4)

Every 2-step arrow in A has a unique homogeneous factorization.

Axiom (O5)

Every 2-step arrow in A has a unique heterogeneous factorization.

https://uemurax.github.io/
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Two factorizations

For example, a 0-cell y is embedded into a 2-cell x in exactly two ways, one
is homogeneous and the other is heterogeneous.

y

•

•

s

t

x

•

y

•

s s ′
x

y

t

x

•

•

y
t

s
x

y

• •

x

s s

s t

y

• •

x

t s

s s

y

• •

x

s t

t t

y

• •

x

t t

s t

Cf. “diamond property” (McMullen and Schulte 2002), “oriented thinness”
(Hadzihasanovic 2020).

https://uemurax.github.io/
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Opetopic set axioms

Axiom (O6)

For every object x : A of degree ≥ 2, there exists a 2-step arrow r : A ↓2 x
such that, for every 2-step arrow f : A ↓2 x, there exists a zigzag

f = f0
s0−→s g0

t t0←− f1
s1−→s · · · sm−1−−−→s gm−1

t tm−1←−−− fm = r,

where gi’s are source arrows into x, si’s are source arrows in A ↓ x, and ti’s
are target arrows in A ↓ x.

https://uemurax.github.io/
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Tree structures on sources

•

• •

•

•

•
r

••

•

•

•

The pasting diagram on the left has the tree structure on the right. Dots
and lines in the tree correspond to 2-dimensional cells and 1-dimensional
cells, respectively, in the pasting diagram.

https://uemurax.github.io/
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Opetopic set axioms

A couple of global axioms.

Axiom (O7)

For every target arrow f : y→t x in A and object z : A of degree
≤ deg(y) − 2, the postcomposition map f! : ArrA(z, y)→ ArrA(z, x) is
injective.

Axiom (O8)

For every k ≥ 3, every k-step arrow y→k x in A factors as f ◦ g such that
f is a (k− 1)-step arrow and g is a 1-step arrow.

https://uemurax.github.io/
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Opetopes

Definition

An opetope is an opetopic set in which a terminal object exists.

Let OSet denote the category whose

▶ objects are small opetopic sets;

▶ morphisms are functors preserving degrees, source arrows, and target
arrows.

Let O ⊂ OSet denote the full subcategory spanned by opetopes.

https://uemurax.github.io/
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Results

▶ OSet ≃ Psh(O).

▶ Equivalence with the polynomial monad definition given by Kock,
Joyal, Batanin, and Mascari (2010).

▶ Presentation of the category of opetopes equivalent to one given by
Ho Thanh (2021).

https://uemurax.github.io/
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Outline

Introduction

Opetopic sets and opetopes

Opetopic sets as presheaves

Comparison with the polynomial monad definition

https://uemurax.github.io/
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Normalization

Proposition

In any opetopic set, every f : x→k y for k ≥ 2 uniquely factors into k

1-step arrows
g1 ◦ . . . ◦ gk

such that

▶ g1, . . . , gk−2 are target arrows;

▶ (gk−1, gk) is homogeneous.

Proof.

Factor f into k 1-step arrows in any way. Rewrite according to Axioms O4
and O5. It terminates!

https://uemurax.github.io/
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Normalization

Consider some part of a 3-opetope.

• s

t

s

s

▶ Exactly one way to embed the 0-cell (•) into the 3-cell as a source of a
source of the target, which is the normal form.

▶ A canonical path to the normal form from any other position, “walking
around counterclockwise”.

https://uemurax.github.io/
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Tree structures on sources

Let A ↓s x ⊂ A ↓1 x denote the set of source arrows into x. Then A ↓s x is
the set of nodes of a tree.

•

• •

•

•

•
r

••

•

•

•

https://uemurax.github.io/
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Local rigidity

Proposition

Let F1, F2 : A→ A ′ be morphisms of opetopic sets, x : A, and x ′ : A ′ such
that F1(x) = F2(x) = x ′. Then

F1 ↓ x, F2 ↓ x : A ↓ x→ A ′ ↓ x ′

are identical.

Proof.

By normalization, it suffices to see F1 ↓s x = F2 ↓s x. This holds because
there is at most one map preserving the tree structure on sources.

https://uemurax.github.io/
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Local rigidity

Proposition

Let F : A→ A ′ be a morphism of opetopic sets and x : A. Then

F ↓ x : A ↓ x→ A ′ ↓ F(x)
is an equivalence.

Proof.

By normalization, it suffices to see F ↓s x : A ↓s x ≃ A ′ ↓s F(x). Use the
tree structure on sources.

https://uemurax.github.io/
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Local rigidity

Corollary

O is a gaunt category.

Corollary

Every morphism of opetopic sets is a discrete fibration.

Corollary

OSet ↓ A ≃ Psh(A) for every A : OSet.

https://uemurax.github.io/
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Local finiteness

Proposition

Let A be an opetopic set. Then A ↓ x is finite for every x : A.

Proof.

By normalization and Axiom O1.

Corollary

Every opetope is finite.

Corollary

O is small.

https://uemurax.github.io/
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The opetopic set of opetopes

We extend O to a preoeptopic set.

▶ degO(A) ≡ degA(∗A), where ∗A : A is the terminal object.

▶ F : A ′ → A is a source/target arrow if F(∗A ′)→ ∗A is a source/target
arrow.

https://uemurax.github.io/
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The opetopic set of opetopes

Proposition

Let A be an opetopic set. The morphism of preopetopic sets

A→ O ↓ A
x 7→ A ↓ x

is an equivalence.

Proof.

The inverse sends F : B→ A to F(∗B).

Corollary

O is an opetopic set (because every slice O ↓ A ≃ A satisfies the axioms).

https://uemurax.github.io/
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The terminal opetopic set

Proposition

O : OSet is the terminal object.

Proof.

(x 7→ A ↓ x) : A→ O is the unique morphism.

Corollary

OSet ≃ Psh(O) (special case of OSet ↓ A ≃ Psh(A)).

https://uemurax.github.io/
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Outline

Introduction
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Comparison with the polynomial monad definition
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Polynomials

A polynomial P on I consists of maps of sets

I
sP←− E(P)

pP−→ B(P)
tP−→ I.

▶ B(P) is a set of “typed operators”.

▶ tP(b) is the output type.

▶ The fiber E(P)b is the set of inputs.

▶ sP(e) is the input type.

A polynomial monad is a polynomial in which “operators can be
composed”.

https://uemurax.github.io/


Opetopes

Taichi Uemura

Introduction

Opetopic sets

Presheaves

Polynomial
monads

References

40/46

The polynomial monad definition of opetopes

By Kock, Joyal, Batanin, and Mascari (2010).

▶ For every polynomial monad P on I, there is a polynomial monad P+

on B(P), called the Baez-Dolan construction.
▶ The set of KJBM n-opetopes OKJBM

n and the polynomial monad Zn

on OKJBM
n are defined by

▶ OKJBM
0 ≡ 1;

▶ Z0 ≡ (1 = 1 = 1 = 1);
▶ OKJBM

n+1 ≡ B(Zn);
▶ Zn+1 ≡ Z+

n .

https://uemurax.github.io/
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Equivalence with the polynomial monad definition

Theorem

On ≃ OKJBM
n

Proof sketch.

Let Yn be the polynomial on On

On

sYn←−− E(Yn)→ On+1
t−→ On,

where the fiber E(Yn)A is On+1 ↓s A. Show Y0 ≃ Z0 and Yn+1 ≃ Y+
n .

There are two compositional structures on pasting diagrams, substitution
and grafting. The polynomial monad structure on Yn is defined by
substitution, and the equivalence Yn+1 ≃ Y+

n is proved by interaction
between substitution and grafting.

https://uemurax.github.io/


Opetopes

Taichi Uemura

Introduction

Opetopic sets

Presheaves

Polynomial
monads

References

42/46

Categorical equivalence

Ho Thanh (2021) gives a definition of the category of opetopes, whose
objects are the KJBM opetopes, by generators and relations. Our O has the
following presentation, which is equivalent to Ho Thanh’s.

Proposition

The category O is presented by:

Generators all the 1-step arrows in O;

Relations all the equations f1 ◦ g1 = f2 ◦ g2 that hold in O such that
(f1, g1) is heterogeneous and (f2, g2) is homogeneous.

This also holds for the underlying category of any opetopic set A.

Proof.

By normalization.

https://uemurax.github.io/
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Summary

▶ Opetopes and opetopic sets are encoded as categories of cells.

▶ No need to care about loops.

▶ Equivalent to the polynomial monad definition (and other definitions).

https://uemurax.github.io/
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